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Abstract: This paper is motivated from some recent papers treating the boundary value problems for impulsive
fractional differential equations. We first give some notations, recall some concepts and preparation results. Sec-
ond, we establish a general framework to find the solutions for impulsive fractional boundary value problems,
which will provide an effective way to deal with such problems. Third, some sufficient conditions for the existence
of the solutions are established by applying fixed point methods. Our results complements previous work in the
area of four-point boundary value problems of fractional order.
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1 Introduction

Boundary value problems for nonlinear differential
equations arise in a variety of areas of applied math-
ematics, physics and variational problems of control
theory. A point of central importance in the study
of nonlinear boundary value problems is to under-
stand how the properties of nonlinearity in a prob-
lem influence the nature of the solutions to the bound-
ary value problems. Multi-point nonlinear boundary
value problems, which refer to a different family of
boundary conditions in the study of disconjugacy the-
ory [1] and take into account the boundary data at in-
termediate points of the interval under consideration,
have been addressed by many authors, for example,
see [2-11] and the references therein. The multi-point
boundary conditions are important in various physi-
cal problems of applied science when the controllers
at the end points of the interval (under consideration)
dissipate or add energy according to the sensors lo-
cated at intermediate points.

Inrecent years, differential equations of fractional
order have been addressed by several researchers with
the sphere of study ranging from the theoretical as-
pects of existence and uniqueness of solutions to
the analytic and numerical methods for finding solu-
tions. Fractional differential equations appear natu-
rally in various fields of science and engineering such
as physics, polymer rheology, regular variation in
thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electrodynamics of complex medium,
viscoelasticity, electrical circuits, electron-analytical
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chemistry, biology, control theory, fitting of experi-
mental data, etc. In consequence, fractional differen-
tial equations have been of great interest. For details,
see [12-19] and the references therein.

Impulsive differential equations, which provide a
natural description of observed evolution processes,
are regarded as important mathematical tools for the
better understanding of several real world problems in
applied sciences. In fact, the theory of impulsive dif-
ferential equations is much richer than the correspond-
ing theory of ordinary differential equations without
impulse effects since a simple impulsive differential
equation may exhibit several new phenomena such as
rhythmical beating, merging of solutions and noncon-
tinuability of solutions. For the general theory and
applications of impulsive differential equations, we
refer the reader to the references [20-24]. On the
other hand, the impulsive boundary value problems
for nonlinear fractional differential equations have not
been addressed so extensively and many aspects of
these problems are yet to be explored. For some re-
cent contribution on impulsive differential equations
of fractional order, see [25-32,36-38] and the refer-
ences therein.

In [33], J. Wang, Y. Zhou, M. Feckan considered
the boundary value problems for the following impul-
sive fractional differential equations

CDtu(t) = f(t.u(t), t€ T, g € (1,2),
Au(ty) = yp, A (tg) = G k= 1,2, -, m,
u(0) =0, u'(1)=0.
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In [34], G. Wang, B. Ahmad, L.Zhang investi-
gated the existence and uniqueness of solutions for a
mixed boundary value problem of nonlinear impulsive
differential equations of fractional order

CD%(t) = f(t,ut), 1<a<2,te],

Auty) = Ir(u(ty)),
Au'(ty) = Ii(ulty)), k= 1,2, - -, p,
Tu'(0) = —au(0) — bu(T),
Tu/'(T) = cu(0) + du(T), a,b,c,d € R.

In a recent paper [32], the authors concerned with
the existence of solutions for the three-point impul-
sive boundary value problem involving nonlinear frac-
tional differential equations:

“Du(t) = f(t,u(t), 0 <t <1, t#t,
k: 1727‘ Y2
Auli=y, = Ix(u(ty)),
AU/|t=t;c = fk(u(tk))’ k= 1727 Y 2
w(0) +u'(0) =0, u(l)+d(&) =0,

where ¢ DY is the Caputo fractional derivative, ¢ €
R, 1<g<2

In [35], B. Ahmad and G. Wang investigated the
existence and uniqueness of solutions for a four-point
impulsive nonlocal boundary value problem of non-
linear differential equations of fractional order

CD(t) = f(t,x(t), t € Jy = T\ {t1,t2, - tp},

Ax(ty) = In(2(ty)),

Az (ty) = Fip(2(ty)), k =1,2,-- -, p,
2'(0) + az(m) = 0,

bx'(1) + x(n2) =0, 0 <y < mo < 1,

where ¢ D9 is the Caputo fractional derivative, 1 <
q<2.

Motivated by the above works, in this paper, we
study the existence of solutions for the four-point non-
local boundary value problems of nonlinear impulsive
equations of fractional order

CDIu(t) = f(t,u(t)), 0 <t <1,

(1
t#tka k:1727"'>p>

Au!t:tk = Ik(u(tk))7

/ = (2)
Au ‘t:tk = Ik(u(tk)), k=1,2,--- p,
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u(0) — pu/(§) =
u(1) +yu'(n)

where ¢ DY is the Caputo fractional derivative, ¢ €
R, 1 <qg<2 f:[0,1] x R — Ris a continuous
function, I, I, : R - R, B,v>0,0<¢&<n <
1, € # ty, n # ty, k=1,2,-- -, pand Aulj—, =
u(ty) —ulty), Mu'li—y, = v/'(t]) —u'(ty), ulty)
and u(t, ) represent the right hand limit and the left
hand limit of the function u(t) at t = t;, and the se-
quences {t;} satisfy that 0 = g < t] <ty < --- <
tp<tp+]_:17p€N.

To the best of our knowledge, there is no paper
that consider the four-point impulsive boundary value
problem involving nonlinear differential equations of
fractional order (1)- (3). The main difficulty of this
problem is that the corresponding integral equation is
very complex because of the impulse effects. In this
paper, we study the existence of solutions for four-
point impulsive boundary value problem (1)- (3). By
use of Banach’s fixed point theorem and Schauder’s
fixed point theorem, some existence results are ob-
tained.

0,
0. 3

2 Preliminaries and Lemmas

The material in this section is basic in some sense. For
the reader’s convenience, we present some necessary
definitions from fractional calculus theory and prelim-
inary results.

Definition 1 [32] The Riemann-Liouville fractional
integral of order q for function y is defined as

Iy(t) = l“(lq) /Ot(t —5)7 y(s)ds, q> 0.

Definition 2 [32] The Caputo’s derivative for func-
tion y is defined as

“Dy(t) =

1 t yM(s)ds
= 1
F 0 o G =l
where [q] denotes the integer part of real number q.

Lemma 3 [32] Let ¢ > 0, then the fractional differ-
ential equation

Cun(t) =0
has solutions

u(t) = c1 4+ cot +c3t? + -+ ent™ !t ¢ €R,
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Lemma 4 [32] Let g > 0, then

I7CDU(t) = u(t) 4+ c1 + cat 4 cst? + - - + cpt™ !

forsomec;, € R, i=1,2,---,n,n=|[q + 1.
For the sake of convenience, we introduce the follow-
ing notations.

Let A = 1+/3+'77 J = [07 1]7 Jo = [Oatl]a J1 =
(t1,t2], wdpe1 = (-1, tp], Jp = (tp, 1], ' =
J\ A{ti,t2,- - -, tp}, and PC(J) = {u : [0,1] —
Rl u € C(J), u(t{) and u(t;) exist, and u(t;) =
u(ty), 1 < k < p}. Obviously, PC(J) is a Banach
space with the norm ||u|| = sup |u(t)|.

0<t<1

Lemma 5 Lery € C[0,1] and &,m € (t,t141), Lis
a nonnegative integer 0 < | < p, 1 < qg < 2. A
function w € PC(J) is a solution of the boundary
value problem

CDru(t) = y(t), 0 <t <1, \
t7étk7k:1,2,---7p’ ()
Auli—, = Ip(u(ty)), s
AU’|t=tk = I_k(u(tk)), k=1,2,---,p,
u(0) — Bu/(§) =
(0) (€) ©

w(1) + 7 () = 0,

if and only if u is a solution of the integral equation

F(lq) /ot(t — )7 y(s)ds + My (8 + 1)
+Ms[B — (B + v)gt]
*W /t, (& = 8)"?y(s)ds,

t e Jo,
1

() /t t— )7 ty(s)ds

koo,
u(t): +()Z/t t—Squ()dS
=1 . .
1= 1 —1
+§<umum+zu<»
FM(B+ ) + Mol — (B + )]
+%§3J?[@—@rmwm
l t e Jyg,
@)
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where
My = —ﬁ(q])g Jiy (1= )" y(s)ds
TG El Ji (ti = )17y (s)ds
p .
vt 2 (1= 1) i (b = 52y (s)ds
p T p
—% ;(1 —ti)Li(u(t;) — % ;fz( u(t;))
— st Ji (= 8)7 2y(s)ds,
l .

My = srgemy X Jul, (b= ) Py(s)ds

+4 Zzzljl Li(u(t;)).

Proof: Suppose that u is a solution of (4)- (6). By
Lemma 4, we have

u(t) = qu(t) — Cl — Cgt
= ﬁ f(f(t — 5)97y(s)ds — Cy — Cot,
t € Jy,

(®)
for some C1,Cy € R. Then we have

V() = — )/t(t—s)qzy(s)ds—Cg, te Jo.

I(g—1) Jo

If t € Jp, then we have

u(t) = F(lq) /:(t — ) Ly(s)ds — di — da(t — 1),
() = F(ql—l) /:(t )92y (s)ds — do,

for some dy,ds € R. Thus

u(tl_) = F(lq) /Ot1 (tl — s)q_ly(s)ds — C1 — Cstq,
U(tf) = _d17
u'(ty) = T(ql—l) /otl (t1 = 5)7 2y(s)ds — Ca,
u'(t+) = —dQ,

1) = Li(u(t1)) and
( (t1)), we have

In view of Aul— -ty = u(

- (
A [i=yy, =W/ (t]) — W/ (t) =

= = [ s (s I ({1t
I_F(q)o 1—5 y(s)ds+1I1(u(t 1—Coty,
—dy = F(ql—l) /0t1 (tlfs)q_2y(s)ds+l_1 (u(t1))—Ca.
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Hence, we obtain

ult) = gy Jiy (8= 8)7  y(s)ds
+£>Wwﬂww@%
"‘r( 1) Jo (t — 5)72y(s)ds+
+(t = t1) L (u(t)) + L (u(ty)) — Cr —
teJy.

Chat,

In a similar way, we can obtain

F
pg§f<wwww@m
+F(q 0 g (t—t;) ft (t; — 5)92y(s)ds
k _
+ ;( ti)Li(u(t:)) + ;Ii(u(ti)) - C1 = Cat,
B tEJk)k:1)2)_'"7p7
)]

W (t) = gy S (0= )72y s)ds
k .
Frien X i, (1= )y (s)ds

kEo_ (10)
+i§1 Ii(u(t;)) — Co,
teJp, k=1,2,---,p.
By (8), (9), (10), we have
u(0) = —C;
u(l) = gy Jo (1= )7 y(s)ds
by £ U0 (= s (o)
b S0 (6 - 97 y(s)ds
+ £ (1=t Tu(t)
+ & L(u(t)) ~ €1~ Cy
u’(&) = F; 5 S (€ = 5)12y(s)ds
+D thlt—SQQ(s)ds
if((»—@,
u'(n) = q ot Jo (= 8)1” 2y(s)ds
+r@],§iﬁ 't — )12y (s)ds
+ Z; Li(u(t;)) — Co.
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In view of the boundary condition (0)
we have

C1= q T(g—1) ftl( 5)972y(s)ds
Sy Z; Sy (ts = )1 2y(s)ds

B Liult) + Cop.

i=1

—Bu(§) =

1D

By the boundary condition u(1) + ~u'(n) = 0, we
have

ﬁ fti(l — 8)77y(s)ds
p .
bt £ 0 = )yl

#p 4N [t Y )
* 111)2(1 ti) Ji (ti—s)T2y(s)ds

+zu—wu<»+zu<»—a—@
+Fq l)ftl( n—5)17? ()ds
o X A (= )y (s)ds
47 3 Tult) — Gy =0,
- (12)
From (11), (12), we obtain
O = 5t Jo (1= 5)7 1y(s)ds
+AI‘ th 1 (t; — 5)7 1y(s)ds
+M£NJ i) Ji, (= )72y (s)ds
+§§¥1—tﬂ(()%% 3 Lu(t)
+ A i - 2y(s)ds
l
—%Tzﬁgmﬂw%@@
——zz((»
q1g<ﬂw%@w
(13)

Co = xic J)L (1 — )7 Ly(s)ds

i £ (6= 9 ()

+ AT ifla 8 JE (s — $)02y(s)ds
ﬂgiu—uﬂ<<>»% 3£ (u(t)
i S — )1 2y(s)ds

b © 0 9 (s)ds

ﬁr§<um+ﬂwﬁx 2y (s)ds.

(14)
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By (8), (9), (13), (14), we get (7).

Conversely, we assume that u is a solution of
the integral equation (7). In view of the relations
CDPIPy(t) = y(t) for p > 0, we get

C Du(t)
t# t,

=y(t), 0<t<1,

k=1,2,---p,1<q<2

Moreover, it can easily be verified that
Auli—y, = In(u(ty)), Au'le—y, = Te(u(ty)),
k=1,2,--
u(0) — Bul(€) =

The proof is completed.

5P
u(1) + v’ (n) = 0.

Lemma 6 Let &, n € (t;,t11), | is a nonnegative in-
teger, 0 <[ < p.
Define an operator T : PC(J) — PC(J) by

T = 5 /t:@ — )71 (s, uls))ds
+7 Z tk—sqlf(su( ))ds

I'(q) O<tp<t” k-1
+$ Z (t—tk)/k (ty — 8)7 2 f(s,u(s))ds

Ple—1) oS b1
+ X (=t (ulte) + X Te(u(ty))

O<tr<t O<tp<t
+M (B +1t) + Mg[ﬁ — (B4 )]
B+ By — Bt 2
+m /tz (& —5)T 7 f(s,u(s))ds,
(15)

where

My = — A
p

ftpu — )17 f (s, u(s))ds
C Lt = 5)T (s, u(s))ds

B) [ (8 — 5)T2 £ (s, u(s))ds
- mfi(u(ti)) —1 g Li(u(t;)
— a0 Jo (= 8)7 2 f (s, u(s))ds,

Clearly, the fixed points of the operator T are solu-
tions of problem (1)-(3).
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3 Main result

Theorem 7 Assume that:
(C1) There exists a constant Ly > 0 such that

[f(t, ) -

foreacht € Jandall z,y € R.
(C3) There exist constants Lo, Lz > 0 such that

fty)] < Lafe —yl,

[Tk (2) = Ie(y)| < Lofx —yl,

[ Ip () — In(y)| < Lslz —yl,

foreacht € Jandallz,y € R, k=1,2,--
If the condition

P

(14 B+7)+(2+26+7)(p+ 1)Ly
Al'(g+1)
21+ B+ )p+ B +268y+7]L1
" AT(q)
n (2428+~)pLa  2(1+4 B+ ~)pLs
A A

<1

is satisfied, then problem (1)-(3) has a unique solu-
tion.

Proof: Let x,y € PC(J). Then for each t € J, we

have
[(Tz)(t) — (Ty)(t)]
< e [ 7G5 () — (s uls)lds
N Fl(Q) i ” ’ ’
I —5)? 1
T 0§<t/tkl(tk )
If(syﬂfl(s ) — f(s,y(s))|ds t
+m 0<§<t(t - tk) /t‘k_l(tk B S)q72
F(5,2(9)) = f(s,0()lds
t 5 (= tl(a(t) ~ Tlu(t)
+0<tz<t [ (2 (k) — Ti(y(tr))|
/3+t pi:l/ (1 sy
If(s w( )) f(s,y(s))lds
B+t & ti ‘
+m¢:1(1 —ti)/ti_l(ti — 5)172
| f(s, (s )) f(s,y(s))lds

+% Z( ti)| iz (i) — Li(y(t))]

22 Z Li(a(t:)) — Ly ()]
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VB+E " .
TAT(G =1 /, (n—s)**
|f(s,z(s)) — f(s 59 y(s))|ds
+(/8+7t ﬁz/ (ti — )12
=1
|f(5>iﬂ($))—f( Z y(s ))\ds
f2xal=? > Vielt) - L)
ﬁ+5’7 pt 3
+Af(q—1)/(€_ 8"
|f(s,2(s)) — f(s,y(s))|ds

<Ll y/ i-Lds

(A + /3 + )Lz —y]
AT'(q)

p+l . .

Z; ft;,l(ti —s)9 ds
A 14+ Ly ||z —y|| <~ [t
(A+B4+1+7) Ly llz—yl| / (hi— )" 2ds

AT'(g—1)
Y(B+1) Ll\x—y!/
Al'(g—1)
B+ Il -yl f€,
Ay by G
1+ A
IR Loy

i=1
BH1+7+A
L N > Lsllz —y]

1=1
A48+ +

s)I™ 2ds

5)12ds

(2+2847)(p+ 1)L
Al'(q+1)
+[2(1+/3+’Y)P+5+257+’Y]L1
AT'(q)
n (2428 +v)pLa
A

2(1+ 8 +~)pLs Iz
A

From

+(2+28+7)(p+ 1)Ly
Al'(g +1)
+[2(1+B+7)p+/6’+2ﬁfy+7]131
AT'(q)
n (24 28+ v)pLo
A

[(1+8+7)

2(1+ 8 +~)pLs
A

<1,

we have
[Tz =Tyl < [lz—yl,
so T is a contraction. As a consequence of Banach’s

fixed point theorem, we deduce that 7" has a fixed
point which is a solution of problem (1)-(3).

Theorem 8 Assume that:

(Cs3) The function f : [0,1] x R — R is con-
tinuous, and there exists a constant N1 > 0 such that
|f(t,u)] < Nyforeacht € Jandallu € R.
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(Cy) The functions Iy, I, : R — R are con-
tinuous, and there exist constants No, N3 > 0 such
that

[ Ii(uw)] < Na, [I(u)| < N3

forallu e R, k=1,2,--

has at least one solution.

-, p. Then problem (1)-(3)

Proof: We shall prove this theorem in four steps.
Step 1: T is continuous.

Let {u,} be a sequence such that u,, — wu in
PC(J).

s,u(s))|ds

— f(s,u(s)t)|d5
O N
0<t,<t tk—1

| f(s,un(s)) — f(s,u(s))|ds
+ Z (t—tk)\fk(un(tk))—fk(u(tk))\
+ Z !Ik(un(tk))—fk(u(tk))l

fg 2o o
|f<sun<s>>—pf< u(s))|ds

B+t b -
+Ar<q—l>;“‘“>/ (i)

16l S Fsuls))lds

|
\ S

(s, uls)lds
BB
Z/

|f(37un(3)) —f( s,u(s))|ds
(5"‘7 Z’I (un (t;)

+ AT 1) /tl (§—s)7
|f(5,un(81) — f(s,u(s))|ds

1 .
< F /tk@— )T £ (5, un(s)) — F(s,u(s))|ds

A — Li(u(t))|

5+57 pt
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A+B+1”+1/tz

ti—1

(5. un(s)) ~ (s, u()lds
+A+B+1+’yz/ (t; —

(5, un(s)) — £(5u(s))lds
+Aéﬂ;ﬂ S (n=5)T21 (s, un(s)) = f (s, u(s))|ds
fﬁf_ml( )2 f (s, un(s)) — f(s, u(s))|ds
ﬁ+1+A

— Z\I n(ti) = Tiu(t:)]
ﬁ+1+w+A _
e 2 i(un(t) — Liu(t:)]-

=1

Since f, I, I are continuous functions, then we have
I Tuy, — Tul| = 0 as n — oo.

Step 2: T maps bounded sets into bounded sets.

We shall show that for any p > 0, there exists a
positive constant L such that for each u € Q, = {u €
PC(J)|||u|l < p}, we have ||Tu|| < L. By (C3) and
(C4), we have for each ¢ € J,

(ool
< @ - j>q-1|f<s,u<s>>\ds
’ — )Y f (s, u(s))|ds
i 0§<t/t“<tk )11 f (s u(s))ld
1 b .
+ N )0§<t(t—tk)/tk_l(tk—s) 2
(o uto)lds
+0<tZ<t(t t) [ Ik (u(te))| + 0<tz<t [k (u(ty))]
p+1
L / (1= )T s uls)lds
ﬁ+ - i -
*arg 0
[F(su(s))lds
20 - ) ()
i?I
S )
o
2 M= s ats)as
NQ;: Z/ Y2 (s, u(s))|ds
(/3’+'V
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B+ By—pBt [¢ "
+m /tl (&= 9772 (s,u(s))lds

< F]zfl) / (t—s)qp;ds
(A+B8+1)NM B + 1 Ny /t |
. Zﬁfqlff i >
+WA(?‘(—Z 1_)]1\;1 /tl (n —s)92ds
(B+ 57N /tf(g ~ 6)12ds

AT'(g—1)
(B+1+A)pNy  (B+1+4+~v+ A)pNs
A
[(1+,8+7)+(2+25+7)(%+ 1))V,
AT(g+1)
21+ B+ 7)p+ B+ 267+~
AT'(q)
n (2428 +~)pN2  2(1+ 8+ 7)pN3
A A '

(t; —s)1 Lds

t; —s)1™ 2ds

_l’_

IN +

+

Thus

[(AI+8+71)+2+28+7)(p+1)M

ITull < AT(q + 1f
214+ B+ 7y)p+ B+ 268y +~]M
- AT(q)
+(2+25+’V)17N2 2(1+ B+ v)pN3
A A

= L.

Step 3: T maps bounded sets into equicontinuous
sets.

Let 2, be a bounded set of PC(.J) as in step 2,
and letu € €2,. Foreach t € J, 0 < k < p, we have

LRICT
< 0
+F(q -1) 0<%;<t /tkl(tk — )77 f(s, u(s))|ds
> [Tk (u(te))]

tk<t il

(ti = )" f (s, uls))|ds

1 t;
Al*(q_l);(l_ti)/til(t g2
(s, u(s))lds p
rx > (1= It + i; Li(uts))

¥ K q-
+m /tl (n— )72 f(s,u(s))|ds
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Afzjq_Ej/llt—sq 21 (s, uls))lds

B+ 57
+x gynwum

e
Far 1), €9 us

Nl /t 92
< t—s)%ds
~I(g—1) (¢=2)
(A+B8+1+7)N; 9
AI‘q—l Z/ t; —s)1 ds
p+1

AF Z/ —sqlds

’YNl /77 q—2
+7 — S dS
Ar@—1)n(" )

BNI /é )
e — 5)97%ds
AF(q — 1) 4 (g )
pNo  (B+1+~+A)pN3
+ A + A
( p+1 A+(A+1+48+7)p +,6’+’y> N
]$rm&n A>%f”) '
DIN2 +1+~v+ A)pN3
= M.
+ ~ T A
Hence, letting t”,t' € Jp, t' < t”, 0 < k < p, we
have

(@)~ @) < [ 1T (s)ds < M),

So, T(€,) is equiv-continuous on all J, (k =
0,1,2,---,p). We can conclude that T : PC(J) —
PC(J) is completely continuous.

Step 4: A priori bounds.

We shall show that the set

Q={ue PC(J)|lu=ATu forsome 0 <\ < 1}

is bounded. Let u € €, then v = ATu for some
0 < A < 1. Thus, for each t € J, we have

At —

u(t))\: e /tk it —8)17 L f(s,u(s))ds
— ' —8)T7 f(s,u(s))ds
megiféluk )L f (s, u(s))d

A t -

+F(q_1)0<%;<t(t_tk)/tkl(tk — )72

f(s,u(s))ds )
A Y (E—te)e(ulty) + X > Le(u(ty))

0<tp<t 0<tp<t

p+1
B+t Z $) 7L f (s, u(s))ds
(5”) K Y LTS
AT(g—1) ;(1 ) /til(tl -9

f(s,u(s))ds
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- A Z(l - tz)jl(u(tz))
i:pl
ATED S i)
MBO
TATGg 1) Jy )
f(s,u(s))ds

— ! _
()
AB+By—Bt) | -

A1) Aﬁf‘ﬁ 2
f(s,u(s))ds
Nyt —

_F( )/(t—s) ds
(A+B+1)

AT

ptl
Zf_’ (t; — 5)9 ds
A 1 )N-
( +B8+1+7) 12/ L= $)1=2ds
’Ll

AT'(g—1)
v(B+1)N;
F ke
+ py) N1 _
+ AT(g— 1) /tz (&—s)? 2ds

+(ﬂ + 1+ A)pNy

(ﬂ‘i‘l'}A—’Y‘l-A)pNg
+ A
SNA+B8+9)+2+28+7) @+ DN
- Al'(g+ 1)
+[2(1+ﬁ+7)p+ﬁ+267+7}N1

AT(q)

(2428 +~)pNa  2(1+ B+ 7)pN3

+ A + A .

Thus, for every t € J, we have

[Jul| < [(1+B8+7)+2+28+7)(p+ 1M

AT'(q +1)
+[2(1+5+7)p+ﬁ+2/37+’7]1\71
AT(q)
(2+ 26+ ~)pN; N 2(14 B+ 7v)pN3
A A '

This shows that €2 is bounded. By use of Schauder’s
fixed point theorem, we deduce that 71" has a fixed
point which is a solution of problem (1)-(3). This
completes the proof.

+
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4 Conclusion

This paper is motivated from some recent papers treat-
ing the boundary value problems for impulsive frac-
tional differential equations. We first give some no-
tations, recall some concepts and preparation results.
Second, we establish a general framework to find
the solutions for impulsive fractional boundary value
problems, which will provide an effective way to deal
with such problems. Third, some sufficient conditions
for the existence of the solutions are established by
applying fixed point methods. Our results comple-
ments previous work in the area of four-point bound-
ary value problems of fractional order. To the best
of our knowledge, there is no paper that consider the
four-point impulsive boundary value problem involv-
ing nonlinear differential equations of fractional order
(1)- (3). The main difficulty of this problem is that
the corresponding integral equation is very complex
because of the impulse effects. In this paper, by use
of Banach’s fixed point theorem and Schauder’s fixed
point theorem, some existence results are obtained.
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